Обратные тригонометрические функции - definição. O que é Обратные тригонометрические функции. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Обратные тригонометрические функции - definição

Арксинус; Арккосинус; Арктангенс; Арккотангенс; Арксеканс; Арккосеканс; Круговые функции; Аркфункции; Arctg; Arccos; Arcsin; Arcctg; Arcsec; Arccosec; Arctan; Аркфункция; Arccotan; Arccot; Arccsc
  • График функции <math>y=\arccos x</math>
  • График функции <math>y = \operatorname{arccosec} x</math>
  • График функции <math>y = \operatorname{arcctg} x</math>
  • График функции <math>y = \arcsec x</math>
  • График функции <math>y = \arcsin x</math>
  • График функции <math>y=\operatorname{arctg}\, x</math>
  • [[Прямоугольный треугольник]] ''ABC''
  • производные обратных тригонометрических функций

ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ         
общее название функций арксинуса, арккосинуса, арктангенса, арккотангенса, арксеканса, арккосеканса, каждая из которых выражает величину дуги (или угла), соответствующей данному значению х тригонометрической функции, название которой получается отбрасыванием приставки "арк". Напр., арксинус (обозначается: arcsinx) обозначает дугу, синус которой равен х.
Обратные тригонометрические функции         

аркфункции, круговые функции, решают следующую задачу: найти дугу (число) по заданному значению её тригонометрической функции. Шести основным тригонометрическим функциям соответствуют шесть О. т. ф.: 1) Arc sin х ("арксинус x") - функция, обратная sin х; 2) Arc cos x ("арккосинус x") - функция, обратная cos х; 3) Arc tg x ("арктангенс x") - функция, обратная tg х; 4) Arc ctg x ("арккотангенс x") - функция, обратная ctg x; 5) Arc sec x ("арксеканс x") - функция, обратная sec x; 6) Arc cosec x ("арккосеканс x") - функция, обратная cosec x. Согласно этим определениям, например, х = Arc sin a есть любое решение уравнения sin х = a, т.е. sin Arc sin a = a. Функции Arc sin x и Arc cos x определены (в действительной области) для |х| ≤ 1, функции Arc tg х и Arc ctg х - для всех действительных х, а функции Arc sec х и Arc cosec х:-для |х| ≥ 1; две последние функции малоупотребительны.

Так как тригонометрические функции периодические, то обратные к ним функции являются многозначными функциями. Определённые однозначные ветви (главные ветви) этих функций обозначаются так: arc sin х, arc cos x,..., arc cosec x. Именно, arc sin х есть та ветвь функции Arc sin х, для которой - π/2 ≤ arc sin х ≤ π/2. Аналогично, функции arc cos х, arc tg х и arc ctg х определяются из условий: 0 ≤ arc cos х ≤ π, - π/2 < arc tg x < π/2, 0 x < π. На рис. изображены графики функций у = Arc sin x, у = Arc cos x, у = Arc tg x, у = Arc ctg x; главные Arc cos x = ± arc cos x +2πn,ветви этих функций выделены жирной линией. О. т. ф. Arc sin х,... легко выражаются через arc sin x,..., например

n = 0, ±1, ±2, ...

Известные соотношения между тригонометрическими функциями приводят к соотношениям между О. т. ф., например из формулы

вытекает, что

Производные О. т. ф. имеют вид

О. т. ф. могут быть представлены степенными рядами, например

эти ряды сходятся для -1 ≤ x ≤ 1.

О. т. ф. можно определить для произвольных комплексных значений аргумента; однако их значения будут действительными лишь для указанных выше значений аргумента. О. т. ф. комплексного аргумента могут быть выражены с помощью логарифмической функции, например

.

Лит.: Новоселов С. И., Обратные тригонометрические функции, 3 изд., М., 1950.

Обратные тригонометрические функции         
Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:

Wikipédia

Обратные тригонометрические функции

Обра́тные тригонометри́ческие фу́нкции (круговые функции, аркфункции) — математические функции, являющиеся обратными к тригонометрическим функциям. К обратным тригонометрическим функциям обычно относят шесть функций:

  • арксинус (обозначение: arcsin x ; {\displaystyle \arcsin x;}  угол, синус которого равен x {\displaystyle x} )
  • арккосинус (обозначение: arccos x ; {\displaystyle \arccos x;}  угол, косинус которого равен x {\displaystyle x} и т. д.)
  • арктангенс (обозначение: arctg x {\displaystyle \operatorname {arctg} x} ; в иностранной литературе arctan x {\displaystyle \arctan x} )
  • арккотангенс (обозначение: arcctg x {\displaystyle \operatorname {arcctg} x} ; в иностранной литературе arccot x {\displaystyle \operatorname {arccot} x} или arccotan x {\displaystyle \operatorname {arccotan} x} )
  • арксеканс (обозначение: arcsec x {\displaystyle \operatorname {arcsec} x} )
  • арккосеканс (обозначение: arccosec x {\displaystyle \operatorname {arccosec} x} ; в иностранной литературе arccsc x {\displaystyle \operatorname {arccsc} x} )

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк-» (от лат. arcus — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции можно связать с длиной дуги единичной окружности (или углом, стягивающим эту дугу), соответствующей тому или иному отрезку. Так, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Манера обозначать таким образом обратные тригонометрических функции появилась у австрийского математика XVIII века Карла Шерфера и закрепилась благодаря Лагранжу. Впервые специальный символ для обратной тригонометрической функции использовал Даниил Бернулли в 1729 году. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin 1 , 1 sin , {\displaystyle \sin ^{-1},{\frac {1}{\sin }},} но они не прижились. Лишь изредка в иностранной литературе, также как и в научных/инженерных калькуляторах, пользуются обозначениями типа sin−1, cos−1 для арксинуса, арккосинуса и т. п., — такая запись считается не очень удобной, так как возможна путаница с возведением функции в степень −1.

Тригонометрические функции периодичны, поэтому функции, обратные к ним, многозначны. То есть, значение аркфункции представляет собой множество углов (дуг), для которых соответствующая прямая тригонометрическая функция равна заданному числу. Например, arcsin 1 / 2 {\displaystyle \arcsin 1/2} означает множество углов ( π 6 , 5 π 6 , 13 π 6 , 17 π 6   ( 30 , 150 , 390 , 510 ) ) {\displaystyle \left({\frac {\pi }{6}},{\frac {5\pi }{6}},{\frac {13\pi }{6}},{\frac {17\pi }{6}}\dots ~(30^{\circ },150^{\circ },390^{\circ },510^{\circ }\dots )\right)} , синус которых равен 1 / 2 {\displaystyle 1/2} . Из множества значений каждой аркфункции выделяют её главные значения (см. графики главных значений аркфункций ниже), которые обычно и имеют в виду, говоря об арксинусе, арккосинусе и т. д.

В общем случае при условии 1 α 1 {\displaystyle -1\leqslant \alpha \leqslant 1} все решения уравнения sin x = α {\displaystyle \sin x=\alpha } можно представить в виде x = ( 1 ) n arcsin α + π n ,   n = 0 , ± 1 , ± 2 ,   . {\displaystyle x=(-1)^{n}\arcsin \alpha +\pi n,~n=0,\pm 1,\pm 2,\dots ~.}

O que é ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ - definição, significado, conceito